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ON A DIFFERENTIAL ENCOUNTER GAME* 

V.A. VIAZGIN 

A game of the encounter of two objects subject to viscous friction and 
control forces is examined. The sufficient conditions for the equality 
of the game's value to the programmed maximin are obtained under constraints 
of a general form. 

A positional encounter game is described by differential equations with constraints on 
the admissible controls (V, is a compactum) 

s-1 x yj, y*j = - k,yj + d, j = 1, 2 (1) 

tj, yj, uj E E”; uj ez lJj, k, > 0 

by the termination time T and by a payoff functional minimizable by the first player and 
maximizable by the second 

I(21 (.), z* (*)) = 1) zz (T) - d (T)II, zj = (i, y') (2) 

The formalization of the game is completed by the concepts and constructions in /l, 2/: posi- 
tion strategies, constructive motions, and game value. 

Let GT = (- s, r] X E"', Yr (to, z,,l, zO*) be the value of game (l), (2) from the initial 

position (to, zol, zgz) E GT, XT’ (to, ~0’) be the set of points sj = *j(T) inpwhich all possible 

motions Zj (.), d (to) = ZoJ, can hit at instant t = T . We introduce into consideration the 
quantity (the programmed maximin) 

It is required to find the conditions under which 

YT (to, z,,*, zg') = er (to, zol, z,") V (to, %*? zo2) = Go (3) 

In the isotropic case, i.e., when 

lJ, = {IL’ E E” / (1 U’ 1) < Fj), j = 1, 2 (4) 

a complete solution of the game is given in /3/; the sufficient conditions for (3) to be satis- 
fied in this case have been given in /l, 2, 4/. We remark that the results mentioned do not 
carry over directly to the case of arbitrary Uj. 
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Below, to study this problem, we use the fundamental construction in /2/ -the stable 

bridge. We denote by #(t) =I zj(t, t,, z*j, &(.)) the j-th player's motion corresponding to the 

control uj (t),t > 1, , and to the initial condition Zj (f,) =: 2,'. Let Z*j = (.Z*j~Y*j),U' (t) = U*j = can& 

Then 

sj(T,t*,z*j, m, j) = A (k,, T - t,) u,j + a (kt, T - t*) Ye’ + z+j 

A (k, t) = + 
p 1 

-t-,1--* a(k,I)=+-q 

The functions A (k, t) and a (k, t) are non-negative, monotonically non-decreasing in t. 

Lemma. For every t > 0. At C (0, tl , the function h: (0, cc)+ E’, h (k) - A (k, t - At)lA (k, 
t) is monotonically increasing. 

Proof. We have 

It can be shown that g (k)> 0, g' (Jr)> 0, g’ (k) > 0 Vk E (0, m).We require the identities 

We have 

Hence from the second identity in (5) it follows that v (k)/g’(k))‘>O. The function f' (k)l 
g’(k) increases monotonically in the domain O<k< 00, and hence 

1’ (7) < g’ (1) $#VT E (0, k) 

Hence 

From the first identity in (5) we have u (k)l g(k))’ >0 and the monotonic increase in the 
function h (k). The lemma has been proved. 

We need the following properties of the motions. 

lo. Let 8 = {SEE": IIsll- 1) be the unit sphere, i&:S+E", hl(s)= max (s, uj) over 

~8'6% uj be the support function of the convex closure of the set U,.. We take SE S and we 
Put 

(s, zj (T, t,, z,j, ulj)) = rqax (s, zj (T, t*, z*j, u,j)) = 
u’q 

A (kj, T - t’*) 6, (4 -t a (kt, T - t+) (8, v*j) + (z, +,j) 

(6) 

From (6) it follows that u,j does not depend on t,,z*j, T. As was shown in /l/ 

87 (t+., ztl, Z+‘) = ma]L (0, XT (t*r z*‘, z*‘)) 

XT (t., z+% z* 
‘)I aES 

max (a CT* (T, t,, Z**, u,*) - zl(T, t+, Z+‘V k9) 

2O. Let 

At E (0, T - t.1, u*j, uj E U1 

Then 

upj (t) = 
1 

u,j, t E It*, t, + w 
uj, tE[t, -I- At, T] 

a+ (T, t,, z,j, uAj) = h, zj (T, t,, z,j, d) -I- (1 - A,) xj (T, t,, z*), u*j) (7) 

hj 3 A (kj, T - t* - At)lA (kj, T - t*) (8) 
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Theorem 1. Let k, > k,. Then (3) is satisfied for game (l), (2). 

Proof. Using the barrier properties of stable bridges (/Z/, p-61), it can be shown that 
(3) holds if and only if for every (t,,z,z,z,*)~Gr the set 

W, = WT ftm 25 @l, z,,*) = ((t, zl, zz) E GT: ET (t, Z', Z2) < '%- &IV zd~ h2)) 

is &stable. Let (t*, z*l, z**) E WT. The second player selects arbitrary At ~(0, T-t,], 

uoz E u, and informs the first player of this. The first player chooses m6*lE? U, from +-he 
condition 

max(s,sz(T,t*, z.,,? u*~)--x~ (T,t*,q,,1,u*l))= 
es 

jf x2 (T, t,, z+% Use) - r”(T, t,, ~~1, u*‘) // = 

min 11 rZ(T,t,, 2*2, ~*~)--z~(T,t*,~*~,u~ /I 
UGV, 

(9) 

Let zj (t, + At, t,, c*j, u,jf = z,j + Ad,f = i, 2, us j be defined by condition (6) and 

u* j(f)= 
( 

U,', tE[t,, t, f At) 

u,j, t c[t, T At, T] 

By virtue of the lemma, hl>, h,, where A, is defined by (8). Using this inequality, as well as 
(6)-(g), we have 

x;(t, -/- At, zRx + Sz’, ~~2 -c AZ*) = (10) 
y-2: (s, ~2 (T, t, $ At, z,* -t_ AZ*, ~$2) - 51 (T, f, i- At, ;*I+ A& 

usi))= max (a 22 (T, t,, zeal ub2 (.)) -x1 (T, t,, zsl, ull (9))) = 
SE9 

I%(& hzx=(T,t*, z*p, us2) + (I- hs)S(T,l*, z*? u*“)- 

h&(T, f,, z*l, IA,‘)-(1 - hl)sl(T, t,, ztl, uL1)) < 
hz max(s,.+(T, &,z*~, uS2) -S(T, t,, t*l, fbl)) + 

GS 

(I- hz)max(s, sa(T, t*, ze2, ~,,a) -.+(T, t,, zel, u*“)) -I- 
s&s 

h&(t*,Zlt,Z,e)+ (1 - hQ)ST(t*rz,',~,') <eT(+ +'l z*') 

Because (to, zd, z,,*), (t*, z*', I**), u**, At are arbitrary, this signifies the d-stability of the 

set WT = WT (to, &,I, &,*B) ‘d (to, &,I, zoz) G GT. Hence (3) follows * The theorem is proved. 
From the theorem it follows that (3) holds for game (11, (2) with k, = k, = 0 and arbitr- 

ary U,, U,. Let inequality (10) be satisfied. The strategy extremal to the ul-stablebridge 

Wr(t,,zd,z,~) (/2/, p.61) is the first player's optimal strategy in the game from the initial 

position (to, &,I, z~,*) E GT ; in this case the optimal programmed strategy Ua2 (t) = Uo2 deter- 
mined by the condition 

min 114 (T, to, 53, uo2) - x1 11 = eT (to, zol, z$) 
xlEX:(k,u~) 

is available to the second player. 

Note that if the first player's equations of motion have the form 2'1 = u'; a?, u1 E E", 

while the second player's have the form x'~ = ua;$, u2~E" or (l), then (31 is satisfied for 
such an encounter game as well. This assertion can be proved by the scheme presented above. 

Example 1. Let kJ > 0, UJ be defined by condition (41, j=i,Z. Then 

xTj (to. Zen) = # E En: II21 - d Ii g RJt (11) 

ET (to, Z@l, zij? = max (0, II s* - 8’ II + fb - fw 

(SJ L: B (kj, T - Co) Y,J + d, RJ = A (kj, T - to) FJ? f = 1.2) 

Using Theorem 1 and the result in /2/, we obtain that the second equation in (11) determines 
the game's value if at least one of the conditions F,>F, or k,>k, is satisfied. 

Example 2. Let k,> 0, k, = 0. II, be defined by condition (4) and 

u, = co {GE En u* = IQ*, i = 1, 2,. ., In) 

Then XT1 (to, z&) is described by the first equation in (11) and 
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(12) 

In accordance with Theorem 1 the second equation in (12) determines the game value. 
Let us consider a positional pursuit game for objects described by differential equations 

with constraints on the admissible constraints (1). In the case of constraints (4) on the 
players controls the problem is known as Pontriagin's check example. The pursuing player 
uses control urand the evading player uses control uz . The pursuit is reckoned completewhen 

51 = ** . We say that the pursuit game is solvable if for every initial position (to, zO', zu2)E 

Ed"+' the first player can find a strategy u,'(t,z1,z2) guaranteeing him completion of the pur- 
suit in a finite time. It is required to find the conditions that ensure that the pursuit 
game is solvable. These conditions are given by 

Theorem 2. Let 

Then the pursuit game is solvable. 

Proof. We have 

xt, 00, zlli, zo2) = I! x02 - 201 II > 0 

Hence it follows that the equation 

0 0) - o_ (0 0) = s2 @or zlll, %I)) 

has the root t = 8,8 > t,. On the strength on Theorem 1 the set We = we@,, zol, zo2) is al- 
stable. By applying the strategy u,'(t,z',z") extremal tows, the first player completes the 
pursuit no later than the instant t= 8. The theorem has been proved. 

Example 3. (Pontriagin's check example). Let the sets LJ,, U, be described by conditions 
(4). Then 6,(s)=FI,j=1,2. The pursuit problem is solvable if 1 d kJ& <FlIFs. The present 
conditions are more stringent than the well-known solvability conditions for Pontriagin's 
check example. 

Example 4. Let the sets U,,51, contain an interior point and be similar, i.e., U1= FL',, 
r > 0. Then 6,(s) = r&(s)>O. The .pursuit problem is solvable if 1 d k,lk, < c. 

Example 5. Let 

v, = (u' E En: /I' 1 IQ I + ft' I ull I + . . . + fn' I +I1 I < 11 
Liz = (u* E I?? 1 ui* 1 < fi', i= 1, 2, . . ., n) 
f = (f,j, hj , . . ..fd).O, I-i.2 

Then 

6, (8) = mar (1 *i I /fil, i = I, 2,. . ., n} 
62 (4 = 51’ I 5 I + 12” I 82 I + f . . + fn’ I m I 

The pursuit problem is solvable if lab/k, 7Uflfl. nf*/[. 

1. 
2. 
3. 

4. 
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