724

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.

2. SUBBOTIN A.I. and CHENTSOV A.G., Security Optimization in Management Problems. Moscow,
NAUKA, 1981.

3. HAGEDORN P., BREDBKWELL J.V., A differential Game with Two Pursurers and One Evader. J.
Optimizat Theory and Appl., Vol.18, No.l, p.15-29, 1976.

.4. PETROSIAN L.A., Differential Pursuit Games. Lenihgrad. Izd, Leningradsk. Gos. Univ., 1977.

5. MELIKIAN A.A., Optimal interaction of two pursuers in a game problem. Izv. Akad. Nauk SSSR,
Tekhn. Kibernet., No.2, 1981.

6. TARLINSKII S.I., On a linear differential game of the encounter of several controlled
objects. Dokl. Akad. Nauk SSSR, Vol.230, No.3, 1976.

7. CHIKRII A.A. and RAPPOPORT I.S., Linear problem of pursuit by several controlled objects.
Kibernetika, No.3, 1978.

Translated by N.H.C.

PMM U.S.S.R.,V0l.47,No.6,pp. 724-727,1983 0021-8928/83 $10.00+0.00
Printed in Great Britain © 1985 Pergamon Press Ltd.
uDC 62-50

ON A DIFFERENTIAL ENCOUNTER GAME’

V.A. VIAZGIN

A game of the encounter of two objects subject to viscous friction and
control forces is examined. The sufficient conditions for the equality

of the game's value to the programmed maximin are obtained under constraints
of a general form.

A positional encounter game is described by differential equations with constraints on
the admissible controls (U; is a compactum)

=y, Y=k +u, =1,2 (L)
g v UL k>0
by the termination time T and by a payoff functional minimizable by the first player and
maximizable by the second
TE () 2()=0z () =2 (D, ¥ = &, ) (@

The formalization of the game is completed by the concepts and constructions in /1, 2/: posi-
tion strategies, constructive motions, and game value.

Let Gr = (— oo, T] X E*, yr (Lo, 2,!, 2,2) be the value of game (1), (2) from the initial
position (t,, 3o, 2%¢%) & Gr, X1’ (64, 2,’} be the set of points gzi = 7z’ (T) in E"which all possible
motions Zj(-L z (o) ==z{, can hit at instant t= T . We introduce into consideration the

quantity (the programmed maximin)

er (to, Zol, Zo°) =  max min || 2% — 2t
22X Xty 20?) S X7 Z0Y)

It is required to find the conditions under which
yr (tl)? zolv zoz) = & (tov zolv zoz) v (tm zolv 202) = GT (3)
In the isotropic case, i.e., when
Uj={W S E" 1W< F} j=1,2 (4)

a complete solution of the game is given in /3/; the sufficient conditions for (3) to be satis-
fied in this case have been given in /1, 2, 4/. We remark that the results mentioned do not
carry over directly to the case of arbitrary U;
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Below, to study this problem, we use the fundamental construction in /2/ — the stable
bridge. We denote by z’(f) = 2/ (¢, ty, 2,’, ' (-)) the j-th player's motion corresponding to the

control wi (f),t > t,, and to the initial condition 2’ (t,) = z,/. Let 2,/ = (z,7,4,%), v (t) = u,’ = const
Then

T (Tt 2ydy ug?) = A gy T — ta) wy’ +a by T~ £y + 24
~kt! ~kt
t 1 i €
A(k,!)=—7c—-1"‘-£p—__[z'* alfnt) =4 — ——
The functions A (k, t) and a (k, t) are non-negative, monotonically non~decreasing in t.

Lemma. For every t >0, At= (0, t| , the function A: (0, =)= EY, A (k)= 4 (k, t — At)/A {k,
t) is monotonically increasing.

Proof. We have
k

T
k) =(_"%%%:{.@_‘ f(]c)=s Se"’(A’-‘)dmdt
[ ]

Kkt
— t
& (k) §§e—‘° dodt

It can be shown that g (k) >0, g" (k) >0, g’ (k) > 0 Vk = (0, «).We require the identities

R Nea L FEY_ewrm fw
(&) =5 -4 ) (L) =50 (Lo —+0) 5
We have
k k
1y ) - Y o phat o, I0AE)
O =" 7w "5”'"‘“"1“‘(03‘ vda)’ Leum L

Hence from the second identity in (5) it follows that (f' (k) /g (k))’ > 0. The function f (k)/
g’ (k) increases monotonically in the domain 0 < k < oo, and hence

r<emLg-vienn

Hence
1) =§ i@ de (§ ¢ ) < LW
qoaes ) NG

From the first identity in (5) we have (f{k)/g (%)) >0 and the monotonic increase in the
function A (k). The lemma has been proved.
We need the following properties of the motions.

1°. Let S={s= E™ |lsll=1) be the unit sphere, &;: S~ E", §;(s) = max (s, u¥) over

Ve U; be the support function of the convex closure of the set U;. We take s= § and we
put ) . . ) . .
(s, z/ (T, Ty z,7, u.l)) = n}ax (s, 27 (T, Las z:’v u"’)) = (6)
wel

Ay T— t‘t) 8;() T alky T—t,)6s, U:j) =+ (s, :tj)
From (6) it follows that y,’ does not depend on i,,z,°, T. As was shown in /1/
er (ttv zu:lv z.’) = Imax {Ov ®T (t;n ztlﬁ z“)}
Ky (Lyr Zetr 243) = max (s, 2% (T g0 2,5 1, 7) — 2 (T t, 2,5 1,1)
E1=]
2°. Let
At (0, T —~ ¢t ), u’, WU,
; Ua'y tE [t ty + AY)
uad () =13
v telt, + a8t T
Then
(T, ty, 24°, uy’) = A 2/ (T, Las z*j‘ w) + (1 — A} 2 (T, ¢, zaj! u*j) (N

hy= Ak, T —ty— AO/A (k) T —1t,) (8)
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Theorem 1. Let k, > k,. Then (3) is satisfied for game (1), (2).
Proof. Using the barrier properties of stable bridges (/2/, p.6l), it can be shown that
(3) holds if and only if for every (t,, z!, 2,}) & Gy the set
Wr = Wr {ts, 208 28 = {{t, 28, D =Crier{t, 28 2B < er b, 2ot 70}
is ul-stable. Let (f,, 2.}, z,%) = Wr. The second player selects arbitrary Ate (0, T —t,),

u,2<= U, and informs the first player of this. The first player chooses <= U; from the
condition

max (5 22 (T by 2,5 U ?) — 21 (T 8, 2,0 1)) = (9)
SE
22 (Tt b ) — 2 (Tt g u Y | =

min | 23 (T, 1y, 2% Uy®) — 2Tyt 2,5 ul |
utzlh

Let 27 (t, + At 1, 3,7, uy)) =z, + Addj =1,2, u,’ be defined by condition (6) and

Uylr tE= [t ty + AL)
ut, tesft, + AL T

UA}(t)=[

By virtue of the lemma, M >> A, where A;is defined by (8). Using this inequality, as well as
(6)~(9), we have

Rty + At 2,0+ Azt 2,2 - A%y = (10)
z?easx (50 22Tty + At 2,2+ 2% u By — 2 (T, b, + Af 2,0 + Azh,

u )= mag 2Ttz ul (=2 (T ez hu ()=
1.1218:; (sﬁ-;z’(T, Far Zadr D) - {1 hg) 23T L0 2,5 ) —
Mt (T by 2y ) — (1 — M) 23 (T £y 244, 0 Y) <
La max (&2 (Tt 2.5 u®) — 2 (Tt 2,0 ut)) +
¢ :xg)ma;: (50 23 (Ts tyr By ) = 2L (T, tyr 255 w1 +
max (A2 ie?s,) {5 AT, by 2ot 151y — ZH(T to 2. 01N <
At (fas 2o 222) -+ (1= A e (g0 241 24) K b (b 2o 24)

Because (g, 2oty Zo%)s (P 2’y Zs'), Uy?, At are arbitrary, this signifies the u'-stability of the

set Wr = Wr {ts Zots 2e8) V {tgs Zo'y %Y) = Gr. Hence (3) follows. The theorem is proved.
From the theorem it follows that (3) holds for game (1), (2) with k, =k, =0 and arbitr-
ary U,, U, Let inequality (10) be satisfied. The strategy extremal to the ul-stable bridge

Wi {toy 24}, 2¢2) (/2/, p.6l) is the first player's optimal strategy in the game from the initial

2

position (s, %o 2%) € Gr ; in this case the optimal programmed strategy U (1) = 4> deter-

mined by the condition
min | 22(T to 2o% uo®) — ! || = e (tos 2o’ 24%)
BEXhll, 2
is available to the second player.
Note that if the first player's equations of motion have the form =z = u}; 2, u' = E",

while the second player's have the form z = u?; 2% u?< E" or (1), then (3} is satisfied for
such an encounter game as well. This assertion can be proved by the scheme presented above.

Example 1. Let k;>0,U; be defined by condition (4), j=1,2. Then
Xy (e 2} = & @ E™ {27 — [ <Ry (1L
ep (foy Zo' 2") = max (0,8 — s'| + Ry — Ry}
(6 = a (ky, T = to) yo! + 2oy Ry = 4 (ky T o) Fs ] = 1.2)

Using Theorem 1 and the result in /2/, we obtain that the second equation in (11} determines
the game's value if at least one of the conditions F,>F, or k >k is satisfied.

Example 2. Let k >0,k =0,U, be defined by condition (4) and
Up=co{a= E" u?=u? i=1, 2,...,m}

Then X! (ty, 2" is described by the first equation in (l1) and
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X g2 (L, 20" = co {a* = E™ 2=z i=1,2,...,m (12)

to, zo 1, 2o2) = max {0, max | z;2 — st — Ry}
e (toy 201y 20%) (’1<i<m i

@ = A (kyy T = to) u® + a (ky T — t) yo* -+ o)’

In accordance with Theorem 1 the second equation in (12) determines the game value.

Let us consider a positional pursuit game for objects described by differential equations
with constraints on the admissible constraints (l1). In the case of constraints (4) on the
players controls the problem is known as Pontriagin's check example. The pursuing player
uses control y! and the evading player uses control u®? . The pursuit is reckoned complete when

= g2, We say that the pursuit game is solvable if for every initial position (t,, z,', z,}) &

E4m*tl the first player can find a strategy u,'(t, z',z?) guaranteeing him completion of the pur-
suit in a finite time. It is required to find the conditions that ensure that the pursuit
game is solvable. These conditions are given by

Theorem 2. Let

ke — Iy <O, max(—(-’j“i—s)—-é‘kg)—> <0

=8
Then the pursuit game is solvable.

Proof. We have

%1, (Lor Zo'y Zo?) = L 22 — 2! Il > 0

%y (b0, 3%, 2%) 8y (%) 8 (s)
lim —~ =max( LR SR <0
Tewcc T—4 seS \ A2 Ay ) -

Hence it follows that the equation

o) =0 (0 (2) = & (to, 2o's 2,%))
has the root t=0,02>1f. On the strength on Theorem 1 the set Wy = Wy (to, 35!, 3,2) is ui-

stable. By applying the strategy u,' (¢, z!, z?) extremal to Wy, the first player completes the
pursuit no later than the instant {= 6. The theorem has been proved.

Example 3. (Pontriagin's check example). Let the sets U,, U; be described by conditions
(4). Then §;(s) = Fj;, j=1,2. The pursuit problem is solvable if 1 < k/ks < Fi/Fy. The present
conditions are more stringent than the well-known solvability conditions for Pontriagin's
check example.

Example 4. Let the sets U,,V:; contain an interior point and be similar, i.e., U, =r Uy
r>0. Then §, (s) = r6, (s > 0. The -pursuit problem is solvable if 1<kl <r.
Example 5. Let
Uy={eE™ il |ut |+ ft w4+ ...+ mut < 1)
Up={ute E™ |ul?|<f3 i=1,2,...,n)
]d= (fljvfzj P -vfn’)>0’ j= 1,2
Then

() =max{|s|/f, i=1,2,...,n}
62(')=11’]‘1|+f!2|52|+ ~--+f'n’|3n|
The pursuit problem is solvable if 1> k/k>|[F1: 1)
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